
Logistic regression

April 25, 2023

1 Logistic regression
Logistic regression can serve as a stepping stone towards neural network algorithms and supervised
deep learning. For logistic learning, the minimization of the cost function leads to a non-linear
equation in the parameters 𝛽. The optimization of the problem calls therefore for minimization
algorithms. This forms the bottleneck of all machine learning algorithms, namely how to find
reliable minima of a multi-variable function. This leads us to the family of gradient descent methods.
The latter are the workhorses of all modern machine learning algorithms.

1.0.1 Basics

We consider the case where the outcome 𝑦𝑖 are discrete and only take values from 𝑘 = 0, … , 𝐾 − 1
(i.e. 𝐾 classes).

The goal is to predict the output classes from the design matrix 𝑋 ∈ ℝ𝑛×𝑝 made of 𝑛 samples, each
of which carries 𝑝 features or predictors. The primary goal is to identify the classes to which new
unseen samples belong.

Let us specialize to the case of two classes only, with outputs 𝑦𝑖 = 0 and 𝑦𝑖 = 1. Our outcomes
could represent the status of a credit card user that could default or not on her/his credit card
debt.

One simple way to get a discrete output is to have sign functions that map the output of a linear
regressor to values {0, 1}, 𝑓(𝑠𝑖) = 𝑠𝑖𝑔𝑛(𝑠𝑖) = 1 if 𝑠𝑖 ≥ 0 and 0 if otherwise. We will encounter
this model in our first demonstration of neural networks. Historically it is called the “perceptron”
model in the machine learning literature. This model is extremely simple. However, in many cases
it is more favorable to use a “soft” classifier that outputs the probability of a given category. This
is achieved by the logistic function.

1.0.2 The logistic (or the fermi) function

In most classification models it is favorable to have a “soft” classifier that outputs the probability
of a given category rather than a single value. For example, given 𝑥𝑖, the classifier outputs the
probability of being in a category 𝑘. Logistic regression is the most common example of a so-called
soft classifier. In logistic regression, the probability that a data point 𝑥𝑖 belongs to a category
𝑦𝑖 = {0, 1} is given by the so-called logit function (or the fermi function) which is meant to
represent the likelihood for a given event,

𝑝(𝑡) = 1
1 + 𝑒−𝑡 = 𝑒𝑡

1 + 𝑒𝑡 = 𝑓(−𝑡).

1

Many times we also use tanh(𝑥) function, which is related to the fermi function by tanh(𝑥) =
𝑓(−𝑥) − 𝑓(𝑥)
We assume now that we have two outputs with 𝑦𝑖 either 0 or 1. Furthermore we assume also that
we have only two parameters 𝛽 to fit. We define probabilities for different outcomes as follows

𝑝(𝑦𝑖 = 1|𝑥𝑖, 𝛽) = exp (𝛽0 + 𝛽1𝑥𝑖)
1 + exp (𝛽0 + 𝛽1𝑥𝑖)

, 𝑝(𝑦𝑖 = 0|𝑥𝑖, 𝛽) = 1 − 𝑝(𝑦𝑖 = 1|𝑥𝑖, 𝛽),

where 𝛽 are the weights we wish to extract from data, in our case 𝛽0 and 𝛽1.

Here we read 𝑝(𝑦𝑖 = 1|𝑥𝑖, 𝛽) as probability for the outcome 𝑦𝑖 = 1 given input variables 𝑥𝑖 and
given fixed parameters 𝛽.

Note that we used
𝑝(𝑦𝑖 = 0|𝑥𝑖, 𝛽) + 𝑝(𝑦𝑖 = 1|𝑥𝑖, 𝛽) = 1.

At the output we will define that ̃𝑦𝑖 = 1 if 𝑝(𝑦𝑖 = 1|𝑥𝑖, 𝛽) > 1/2 and is 0 otherwise.

1.1 Maximum likelihood
In order to define the total likelihood for all possible outcomes from a
dataset 𝒟 = {(𝑦𝑖, 𝑥𝑖)}, with the binary labels 𝑦𝑖 ∈ {0, 1} and where the data points are drawn
independently, we use the so-called Maximum Likelihood Estimation (MLE) principle.

We aim thus at maximizing the probability of seeing the observed data. We can then approximate
the likelihood in terms of the product of the individual probabilities of a specific outcome 𝑦𝑖, that
is

𝑃(𝒟|𝛽) =
𝑛

∏
𝑖=1

[𝑝(𝑦𝑖 = 1|𝑥𝑖, 𝛽)]𝑦𝑖 [1 − 𝑝(𝑦𝑖 = 1|𝑥𝑖, 𝛽))]1−𝑦𝑖

If this probability is maximized, its log value is also maximized, and − log value is minimized. We
can then define a corresponding cost function as

𝐶(𝛽) = − log(𝑃 (𝒟|𝛽))

𝒞(𝛽) =
𝑛

∑
𝑖=1

−𝑦𝑖 log[𝑝(𝑦𝑖 = 1|𝑥𝑖, 𝛽)] − (1 − 𝑦𝑖) log [1 − 𝑝(𝑦𝑖 = 1|𝑥𝑖, 𝛽))] .

This equation is known in statistics as the cross entropy.

Finally, we note that just as in linear regression, in practice we often supplement the cross-entropy
with additional regularization terms, usually 𝐿1 and 𝐿2 regularization as we did for Ridge and
Lasso regression.

1.2 Minimizing the cross entropy cost function
The derivative can be easily derived

𝜕𝐶(𝛽)
𝜕𝛽𝑗

=
𝑛

∑
𝑖=1

(−𝑦𝑖
𝑝𝑖

+ 1 − 𝑦𝑖
1 − 𝑝𝑖

) 𝜕𝑝𝑖
𝜕𝛽𝑗

(1)

2

https://en.wikipedia.org/wiki/Maximum_likelihood_estimation

where we denoted 𝑝(𝑦𝑖 = 1|𝑥𝑖, 𝛽) = 𝑝𝑖 and

𝜕𝑝𝑖
𝜕𝛽𝑗

= 𝜕
𝜕𝛽𝑗

1
1 + 𝑒−(𝛽0+𝛽1𝑥𝑖) = 1

1 + 𝑒−(𝛽0+𝛽1𝑥𝑖)
1

1 + 𝑒(𝛽0+𝛽1𝑥𝑖) (𝛿𝑗=0 +𝑥𝑖𝛿𝑗=1) = 𝑝𝑖(1−𝑝𝑖)(𝛿𝑗=0 +𝑥𝑖𝛿𝑗=1)
(2)

We therefore see that

𝜕𝐶(𝛽)
𝜕𝛽𝑗

=
𝑛

∑
𝑖=1

(−𝑦𝑖
𝑝𝑖

+ 1 − 𝑦𝑖
1 − 𝑝𝑖

) 𝑝𝑖(1 − 𝑝𝑖)(𝛿𝑗=0 + 𝑥𝑖𝛿𝑗=1) =
𝑛

∑
𝑖=1

(𝑝𝑖 − 𝑦𝑖)(𝛿𝑗=0 + 𝑥𝑖𝛿𝑗=1) (3)

If we defined a design matrix with two columns 𝑋𝑇 = [1, 𝑥𝑖], i.e., the first column is 1 and the
second is the input observable 𝑥𝑖, than we can write the derivative of the cost function as

𝜕𝐶(𝛽)
𝜕𝛽𝑗

= X𝑇 (p − y)

Here p, y ∈ ℝ𝑛 and X ∈ ℝ𝑛×2

The second derivative of the cost function is

𝜕2𝐶(𝛽)
𝜕𝛽𝑙𝜕𝛽𝑗

= 𝜕
𝜕𝛽𝑙

𝑛
∑
𝑖=1

(𝑝𝑖−𝑦𝑖)(𝛿𝑗=0+𝑥𝑖𝛿𝑗=1) =
𝑛

∑
𝑖=1

(𝛿𝑗=0+𝑥𝑖𝛿𝑗=1)𝜕𝑝𝑖
𝜕𝛽𝑙

=
𝑛

∑
𝑖=1

(𝛿𝑗=0+𝑥𝑖𝛿𝑗=1)𝑝𝑖(1−𝑝𝑖)(𝛿𝑙=0+𝑥𝑖𝛿𝑙=1)

(4)
This can be compactly written as

𝜕2𝐶(𝛽)
𝜕𝛽𝑇 𝜕𝛽 = X𝑇 WX (5)

where 𝑊 is a diagonal matrix with entries 𝑊𝑖𝑖 = 𝑝𝑖(1 − 𝑝𝑖).
This matrix is positive definite, which can be proven by noting that we can redefine 𝑋𝑖𝑗 =
√𝑝𝑖(1 − 𝑝𝑖)𝑋𝑖𝑗, in terms of which the second derivative is just 𝑋𝑇 𝑋. Than the proof is iden-
tical to the one in linear regression. Namely, the singular values of 𝑋 exist and are 𝜎, therefore the
eigenvalues of 𝑋𝑇 𝑋 are equal to 𝜎2, and therefore the matrix is positive definite.

The consequence is that the global minimum exists and the cost function is minimum in the solution

𝜕𝐶(𝛽)
𝜕𝛽 = 0

.

Finally, to find the minimum with respect to the parameters 𝛽0, 𝛽1, we need to solve nonlinear set
of equations, which can only be done numerically.

The method of choice is the Newton’s method, or, in multidimensional case we also call it the
gradien descent method.

1.2.1 Gradient descent method

If we want to find zero of a gradient

0 = 𝜕𝐶
𝜕𝛽𝑗

= ∑
𝑖

𝑋𝑗𝑖(𝑝𝑖(𝛽) − 𝑦𝑖) ≡ 𝑔𝑗(𝛽)

3

we can Taylor expand around 𝑔𝑗(𝛽) = 0, which gives us the famous Neton’s-Raphson method

𝛽𝑘+1 = 𝛽𝑘 − (∇𝛽𝑔(𝛽𝑘))−1𝑔(𝛽𝑘)

which is a generalization of the 1D case 𝑥𝑘+1 = 𝑥𝑘 − 𝑔(𝑥𝑘)
𝑔′(𝑥𝑘) . Note that 𝑔(𝛽𝑘) is a vector, and its

derivative is a matrix.

We note that
∇𝛽𝑔(𝛽𝑘) ≡ 𝜕2𝐶(𝛽)

𝜕𝛽𝑙𝜕𝛽𝑗

is the second derivative and is the so-called Hessian matrix. We will denote it by

𝐻𝑙𝑗(𝛽) ≡ 𝜕2𝐶(𝛽)
𝜕𝛽𝑙𝜕𝛽𝑗

In the Newton’s method we thus need to iterate the following equation

𝛽𝑘+1 = 𝛽𝑘 − 𝐻−1(𝛽𝑘)𝑔(𝛽𝑘)

In most practical applications, the Hessian matrix is very expensive to calculate and to invert.
Instead, in most gradient descent methods one approximates 𝐻 by a number, which is called the
learning rate.

The later is usually a parameter that is being modified or adjusted with iterations, so that minimum
of 𝐶 is found. Note that the equation

𝛽𝑘+1 = 𝛽𝑘 − 𝛾𝑔(𝛽𝑘)

for appropriate number 𝛾 > 0 is also approaching the minimum, as 𝑔(𝛽) is gradient in the direction
of descent of function 𝐶(𝛽). The problem is that we don’t know apriory how large should 𝛾 be.

These equations are usually termed gradient descent (GD) method optimizing function 𝐹(x),
x ≡ (𝑥1, ⋯ , 𝑥𝑛), decreases fastest if one goes from x in the direction of the negative gradient
−∇𝐹(x).
It can be shown that if

x𝑘+1 = x𝑘 − 𝛾𝑘∇𝐹(x𝑘),
with 𝛾𝑘 > 0. For 𝛾𝑘 small enough, then 𝐹(x𝑘+1) ≤ 𝐹(x𝑘). This means that for a sufficiently small
𝛾𝑘 we are always moving towards smaller function values, i.e a minimum.

In machine learing we are often faced with non-convex high dimensional cost functions with many
local minima. Since GD is deterministic we will get stuck in a local minimum, if the method
converges, unless we have a very good intial guess. This also implies that the scheme is sensitive
to the chosen initial condition.

Many of these shortcomings can be alleviated by introducing randomness. One such method is
that of Stochastic Gradient Descent (SGD).

4

1.3 Stochastic Gradient Descent
The underlying idea of SGD comes from the observation that the cost function, which we want to
minimize, can almost always be written as a sum over 𝑛 data points {x𝑖}𝑛

𝑖=1,

𝐶(�) =
𝑛

∑
𝑖=1

𝑐𝑖(x𝑖, �).

This in turn means that the gradient can be computed as a sum over 𝑖-gradients

∇𝛽𝐶(�) =
𝑛

∑
𝑖=1

∇𝛽𝑐𝑖(x𝑖, �).

Stochasticity/randomness is introduced by only taking the gradient on a subset of the data called
minibatches. If there are 𝑛 data points and the size of each minibatch is 𝑀 , there will be 𝑛/𝑀
minibatches. We denote these minibatches by 𝐵𝑘 where 𝑘 = 1, ⋯ , 𝑛/𝑀 . We have

𝛽𝑗+1 = 𝛽𝑗 − 𝛾𝑗
𝑛

∑
𝑖∈𝐵𝑘

∇𝛽𝑐𝑖(x𝑖, �)

where 𝑘 is picked at random with equal probability from [1, 𝑛/𝑀]. An iteration over the number
of minibathces (𝑛/𝑀) is commonly referred to as an epoch. Thus it is typical to choose a number
of epochs and for each epoch iterate over the number of minibatches.

More complex optimizers are used in ML, in particular ADAM, which are much more technical and
beyond the scope of these lectures.

1.4 Extending to more classes (beyond two outputs)
If the otput requires more than two outpus, lets say 𝐾 (exmple: digits between 0 − 9), we can
generalized the sigmoid function to so called softmax function, in which each ouput neuron has
probability proportional to 𝑒𝑧𝑗 with 𝑗 ∈ [0, .., 𝐾 − 1]. The function for probability would have the
following form:

𝑓(𝑧𝑖) = exp (𝑧𝑖)
∑𝐾

𝑚=1 exp (𝑧𝑚)
.

where 𝑧𝑖 = ∑𝑗 𝛽𝑖𝑗𝑥𝑗 + 𝑏𝑖.

This function is called Softmax function, which is actually Boltzman weighted sum.

Note that the derivatives are now a bit more involved, i.e.,

𝜕𝑓(𝑧𝑖)
𝜕𝛽𝑗𝑘

= exp (𝑧𝑖)
∑𝐾

𝑚=1 exp (𝑧𝑚)
𝜕𝑧𝑖

𝜕𝛽𝑗𝑘
− ∑

𝑝

exp (𝑧𝑖)
(∑𝐾

𝑚=1 exp (𝑧𝑚))2
exp (𝑧𝑝) 𝜕𝑧𝑝

𝜕𝛽𝑗𝑘
.

Since
𝜕𝑧𝑝
𝜕𝛽𝑗𝑘

= 𝛿𝑝,𝑗𝑥𝑘

we have
𝜕𝑓(𝑧𝑖)
𝜕𝛽𝑗𝑘

= 𝑓(𝑧𝑖) (𝛿𝑖𝑗 − 𝑓(𝑧𝑗)) 𝑥𝑘
𝜕𝑓(𝑧𝑖)

𝜕𝑏𝑗
= 𝑓(𝑧𝑖) (𝛿𝑖𝑗 − 𝑓(𝑧𝑗)) ,

which in case of the simply binary model reduces to having 𝑖 = 𝑗.

5

[]:

6

	Logistic regression
	Basics
	The logistic (or the fermi) function

	Maximum likelihood
	Minimizing the cross entropy cost function
	Gradient descent method

	Stochastic Gradient Descent
	Extending to more classes (beyond two outputs)

